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Synopsis 

The dynamic relaxation behavior of a model two-phase system, poly(2-hydroxyethyl methac- 
ry1ate)-glass beads, was studied by means of a freely oscillating torsional pendulum. The effect 
of the filler content on the storage and loss moduli of the composites could be described in terms 
of the modified Kerner equation in complex form. At temperatures below the glass transition 
temperature of the matrix, the agreement between experimental and theoretical data was satis- 
factory after correction for thermally induced stress due to different thermal expansion coeffi- 
cients of matrix and filler. In the presence of filler, the capacity of the matrix to store and dissi- 
pate energy increases, but the character of molecular motions underlying the dispersions ob- 
served is preserved because the temperature of the dispersions remains unchanged. The effect 
of water on the dynamic relaxation behavior of composites is primarily reflected in changes in 
the shape of the temperature dependence of the dissipating capacity of the matrix. The data 
allow the conclusion to be drawn that the chain mobility a t  the interphase boundary does not de- 
crease and that no additional frictional mechanisms appear. 

INTRODUCTION 

Polymethacrylates rank as model polymers which are frequently used in 
the study of molecular mobility in the glassy state. Generally, it can be said1 
that besides the main ( a )  dispersion corresponding to the glass transition, po- 
lymethacrylates exhibit a secondary (01) dispersion at  a temperature of about 
20°C (1 Hz) and a low-temperature (yj dispersion at temperatures lower than 
-12OOC. The latter two dispersions are assigned1S2 to the hindered rotation 
of the -COOR or -R side groups (where R is alkyl, hydroxyalkyl, halogenal- 
kyl, etc.). The interaction of low molecular weight compounds with polar 
groups of the side chains gives r i ~ e ~ - ~  to the “diluent” (&,) dispersion in the 
temperature range between the y and 01 dispersions. 

In a number of earlier p a p e r ~ , ~ ? ~ - l l  we investigated in detail the dynamic 
relaxation behavior of poly(2-hydroxyethyl methacrylate) (PHEMA), which 
exhibits the above dispersions (related to a frequency of 1 Hz) a t  tempera- 
tures T ,  = 104OC, To, = 28OC, T ,  = -133OC, and To,, = -70 to -120OC (ac- 
cording to the type and concentration of diluent). If a t  cooling of swollen 
PHEMA, a certain amount of the diluent contained is separated in the form 
of a second phase, the heterogeneous system exhibits, moreover, dispersions 
characteristic of the phase of the glassy or crystalline d i l ~ e n t . ~  We attempt- 
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ed to use the knowledge gathered so far and briefly outlined above for 
studying the molecular mobility of heterogeneous systems which recently 
have been increasingly gaining in importance. 

Composites consisting of the polymer matrix and a particulate .filler can be 
regarded as ordinary multiphase polymer systems. A number of equations 
based on theoretical models12-16 were derived in order to calculated their 
properties, such as the modulus of elasticity, mechanical damping, electrical 
and thermal conductivity, etc., from the respective properties of the compo- 
nents. However, verification of the models and their further refinement re- 
quires extensive and reliable experimental data. So far, only few data have 
been collected on particular composites where the matrix and filler are in the 
glassy state. It can be assumed that the parameters of the relaxation motion 
of side chains or short segments of main chains will be sensitive toward a pos- 
sible interaction between the filler and matrix. It has been the objective of 
this work to find out what effect the volume fraction of filler (glass beads) has 
on the temperature and intensity of the PHEMA dispersions. We assumed 
that the data obtained will allow us to complete the earlier information17.1s 
on the PHEMA-glass bead interaction and at  the same time to estimate the 
character of the new mechanisms that may arise and lead to energy losses in 
heterogeneous systems. From this viewpoint, we also investigated the dy- 
namic relaxation behavior of the three-component, two-phase system 
(PHEMA + water)-glass beads. 

EXPERIMENTAL 

The preparation of PHEMA filled with glass beads, an essential fraction of 
which had a diameter about 30 pm, has been described earlier.17Js Samples 
approximately 1.5 X 7 X 60 mm3 in size were dried to constant weight over 
P205 at a temperature ca. 90OC. Before measurement, the samples were an- 
nealed at 130-140°C and slowly cooled to room temperature. The samples 
swollen with water were sealed into ampoules and stored at room tempera- 
ture for at  least one month. The dynamic mechanical properties were mea- 
sured with a torsional pendulum having digital recording of free damped os- 
c i l l a t i o n ~ ~ ~ ;  an average increase in temperature with time was loC/2 min. 

RESULTS AND DISCUSSION 

Effect of Thermally Induced Stress 

The level of the storage modulus of composites increases with the content 
of glass beads within the whole temperature range of the glassy state investi- 
gated (Fig. 1). A t  the same time, the filler modifies the shape of the temper- 
ature dependence of the storage modulus, so that the relative modulus G’, = 
G‘JG’,,, (index m denotes the unfilled matrix) decreases with decreasing 
temperature (Fig. 2). The cause of this frequent phenomenon is seen20-22 as 
a thermally induced stress arising in the composite during cooling because of 
the different thermal expansion coefficients of components (hence the index 
s). Since the modulus of the polymer matrix decreases with stress, the poly- 
mer layer surrounding the filler particle has a lower modulus of elasticity 
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Fig. 1. Temperature dependence of moduli G' and G" (dyn/cm2) and tg 6 of poly(2-hydroxy- 
ethyl methacrylate)-glass beads composites. Number a t  curve gives volume fraction of filler. 
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Fig. 2. Temperature dependence of relative modulus of poly(2-hydroxyethyl methacrylate)- 
glass beads composites. Straight lines indicate average slope of temperature dependence of rela- 
tive modulus, respective numbers give volume fraction of filler; LB is lower boundary of temper- 
ature dependence of relative modulus for Ub = 0.4 calculated using eq. (6). 
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Fig. 3. Effect of filler content on slope of temperature dependence of relative modulus of com- 
posites: (0) experimental data read from Fig. 2; full or broken lines respectively calculated from 
eq. (1) by using extrapolated G’?@ or relative modulus values from eq. (3). 

than the unfilled matrix (at the same temperature), even though the overall 
modulus of the composite increases. The magnitude of the induced stress 
near the filler particle increases with decreasing temperature, so that the re- 
duced modulus GrrS decreases accordingly. Under these assumptions, the 
following equation has been derived20 for the temperature dependence of the 
relative modulus (the equation is given here in the notation for the storage 
shear modulus, because in isochronous measurements one can with good ac- 
curacy assume that Gc,/Gm = G’cs/G’m): 

where Grcs and Grc, respectively, denote the shear modulus of the composite 
in the presence and absence of the thermally induced stress; a, and Cub are 
the linear thermal expansion coefficients of matrix and filler; tym is the ma- 
trix elongation at  yield; and K is a factor dependent on the shape of the filler 
particles. Calculating the factor K according tozo 

K = (1/2)[(1 ~rn) /2  + (1 - 2 Vb)/(Eb/Em)]-’ 

we used urn = 0.35 and Ub = 0.22 for Poisson’s ratio of matrix and filler20 and 
Eb/E, = 20 for the filler-to-matrix ratio of Young’s moduli; hence K = 0.71. 
Owing to the marked temperature dependencez3 of am, the difference ( a ,  - 
(Yb) is a function of temperature; the average value 4 X deg-l was used in 
the calculations. If the stress-strain curve is described by means of the first 
two terms of a power series, the resulting expression for the decrease in the 
modulus with deformation iszo Em, = E,[1 - (t/tym)]. Since at  tempera- 
tures deeply below the glass transition temperature Tg the samples are des- 
tructed before reaching the yield point, tym should be regarded only as a pa- 
rameter of eq. (1) expressing the decrease in the matrix modulus with in- 
creasing deformation. Such tym is not connected with the real ultimate prop- 
erties of PHEMA and their dependence on temperature. With respect to 
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data published for polymethacrylate~,~~ we chose eym = 0.03. The quantity 
GJre = (G’JG’,) representing the maximum reinforcing for a given filler con- 
centration was obtained by extrapolation (hence index e )  of the relative mod- 
ulus G’, to the main transition temperature T ,  = 104OC (Fig. 2; Table I).2o 
( T ,  is some 15OC higher than the dilatometrically determined23 Tg, so that 
the existing molecular mobility excludes the formation of thermally induced 
stress.) The values calculated by means of eq. (16) in reference 20 were used 
for the function f ( U b ) .  Although only approximate values of the above terms 
were used, the good agreement between the experimental and calculated 
d(G’,,/G’,)/dT values (Fig. 3 )  suggests that the above causes of the tempera- 
ture dependence of G‘, included in eq. (1) can be regarded as real. The de- 
viation of experimental data from the theoretical linear dependence (Fig. 2) 
in the region around O°C can be qualitatively explained by the thermal de- 
pendence of the quantity (a ,  - Cub). Dilatometric measurements have re- 

that the dispersion of PHEMA and of a number of other esters 
of poly(methacry1ic acid) is accompanied by an increase in the thermal ex- 
pansion coefficient. As shown by eq. ( l ) ,  the increase in am leads necessarily 
to an increase in the slope of the temperature dependence of GjrS, in agree- 
ment with the trend of the experimental data. 

Effect of Filler on the Storage and Loss Moduli 

A number of equations have been derived to calculate elastic properties of 
multiphase systems from the properties of the component~.l~-’~ An equation 
derived by Kerner12 and modified by Nielsen14 appeared to be best suited for 
the description of the reinforcement of glassy PHEMA filled with glass 
beads. Since in this paper the results of dynamic mechanical measurements 
are reported, the equation had to be used in complex form (cf.15126*27): 

where A = (7 - 5v,)/(8 - lOv,), B* = [(G*b/G*m) - l ] / [ (G*b/G*m) + A], 
and the empirical function $ = 1 + [ ( l  - Umax)/U2max]Ub represents correction 
for the maximum possible filling (for beads of the same size,14J6 Umax = 0.64). 
Using simplifying assumptions G”b = 0, G’b 2 10 G’,, G’, 2 10 G”,, one can 
with good accuracy write 

B* = B’ + iB” = [(G’b/G’,) - l] /[(G’b/G’,)  + A ]  
- i [ ( A  + l ) (G”, /G’b) ] / [ l  + (AG’,/G’b)I2 

and from eq. (2) derive approximate relationships: 

(A + $)B”vb 
( 1  + AB’Vb) ( 1  - B’$vb)’ 

tg 6, = tg 6, - 

If all the three simplifying assumptions are fulfilled, the relative error of eqs. 
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Fig. 4. Effect of filler content on relative modulus of composites. Full and broken lines respec- 
tively represent extrapolated Qre and data calculated using eq. (3). 

(3)-(5) is not greater than 5%. Similar equations for the storage and Young’s 
loss moduli, in which the parameter 1c/ was introduced in a different manner, 
were used to describe the dynamic mechanical properties of the polymer- 
polymer composites.15 

Since the modulus G‘, increases with temperature, an extrapolated Grre 
was considered in the estimation of the reinforcing effect (Fig. 2). Ratios of 
G’c(T,)lG’m( T,) are rather inaccurate, because at temperatures about T ,  the 
moduli of both the composite and the matrix steeply decrease with increasing 
temperature (Fig. 1). With respect to the above extrapolation, the average 
value G‘bIG’, = 20 was used, even though at  T, this ratio may be higher. 
The agreement between experimental and theoretical data is satisfactory up 
to the glass beads content U b  = 0.4 (Fig. 4; Table I). It can be said, therefore, 
that the shear modulus of the model composite PHEMA-glass beads is af- 
fected by the filler content in a standard manner. The probable cause of the 
low Grre for Ub = 0.5 can be sought in the aggregation of the filler particles 
and in the possible formation of because the content of glass 
beads approaches the maximum random packing. Substitution of the modu- 
lus G’, calculated according to eq. (3) into eq. (1) yielded the theoretical de- 
pendence of d(G’,,lG’,)ldT on the filler cqntent, also shown in Figure 3. In 
this case, too, it is obvious that the agreement between experimental and the- 
oretical data is good up to U b  = 0.4; for Ub = 0.5, the theoretical value is higher 
than the experimental one. 

The existence of thermally induced stress in the composites under investi- 
gation can also be documented by calculating the temperature dependence of 
the lower limit of the modulus of elasticity according to the following equa- 
tion13 (on a simplifying assumption that in the glassy state the moduli G,, 
G,, and Gb can be approximated by the corresponding storage moduli): 

G’,(-) = G’, + Ub/[l/(G’b - G’,) + D(u,/G’,)] (6) 
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Fig. 5. Effect of volume fraction of poly(2-hydroxyethyl methacrylate) UH in composites (0) 
and in copolymers with methyl methacrylate (01, methacrylamide (O), and acrylamide (0)  on 
the height of low-temperature maximum. Broken and dash-and-dot lines respectively were calcu- 
lated using eqs. (5) and (7); full line represents average linear dependence of damping on UH for 
copolymers. 

where urn is the volume fraction of the matrix in the composite. G’b = 3 X 
loll dyn/cm2 was ~ ~ e d ~ ~ ~ ~ ~  and approximate values of the bulk modulus of 
the matrix K ,  involved in the constant D = 6(K, + 2Gm)/5(3K, + 4G,) 
were calculated from the modulus G’, using the temperature independent 
Poisson’s ratio v, = 0.35. The curve given in Figure 2 was calcu@ted for 
ub  = 0.4, because at  such filling the experimental data agree well with the 
theoretical values G’,/G‘, and d(G’,,lG’,)ldT. Hence, one can see that 
owing to the thermally induced stress a t  low temperature the modulus of the 
composite can assume values lower than admitted by theory. 

The glass beads in PHEMA also considerably influence the magnitude of 
energy losses (Fig. 1): the height of the y maximum increases from 15.7 X 
lo8 dyn/cm2 for PHEMA to values around 20 X lo8 dyn/cm2 for composites 
with the filler fraction Ub 2 0.2 (Table I). At temperatures above -lOO°C, 
one can see an increase in the level of the loss modulus with the filler content; 
€or samples having Ub 1 0.3, the 01 maximum is overlapped by the left branch 
of the much higher main loss maximum situated at  104OC. 

To compare the experimental values of the loss modulus and tg 6 with the 
theoretical ones, calculations were carried out using eqs. (4) and (5) for three 
characteristic temperatures: T,, -6OoC, (at which the loss modulus passes 
through a minimum) and T,. As follows from Table I, calculated G”, values 
increase with filler content and are all higher than the experimental ones. 
However, the experimental values of G “ ,  are affected by thermally induced 
stress similarly to the corresponding values of G’. To eliminate this effect, 
calculated e”, values were multiplied by the factor G’rs( T,)/G’r(Ta) ex- 
pressing the decrease in the relative modulus of the composite owing to the 
thermally induced stress. The corrected loss moduli ( ~ ” y ) c o r  then agree well 
with the experimental data (Table I). 

A similar situation is found for the loss modulus @”(-6OoC),,, = 
@I’ (-60°C) [G rs (- 6O0C)/G’,( T,)] at  the minimum of mechanical losses. It 
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can be said consequently that the thermally induced stress depresses the cor- 
responding moduli G‘,, and G”,, to the same extent. This is also indicated 
by the fact that tg 6, = G”,,/G’,, (Table I) fits in fairly well with the theoreti- 
cal data without any correction. Figure 1 also shows that with increased fill- 
er content the f l1 maximum becomes flat and, for Ub = 0.5, virtually disap- 
pears. Besides the overlapping of the fl1 maximum with the a maximum, the 
cause should be looked for in the increasing effect of thermally induced 
stress. It should be taken into account that the correcting factor G’,(T)/ 
G’,(T,) increases with filler content; as a consequence, the resulting temper- 
are dependence of the loss modulus of composites becomes flatter. 

While for the evaluation of the effect of the filler content on the storage 
modulus extrapolated values had to be used (Fig. 2), in the case of the loss 
modulus one can start with values determined experimentally (Fig. 1). As 
follows from Table I, the relative magnitude of the (Y loss maximum G”,(T,) 
= G”,(T,)/G”, (T,) increases with the filler content virtually identically 
with the extrapolated relative modulus Gre. Only for Ub = 0.5 the G”,(T,) 
value is higher than Gtre and approaches the theoretical value. (Even though 
at  T ,  the simplifying assumption G’, I G”, is not fulfilled any more, the 
relative error of eqs. (3)-(5) does not exceed 10% on the average.) The satis- 
factory agreement between the experimental and calculated data for G”,( T,) 
also justifies the assumption that thermally induced stress is negligible a t  T,. 

Data in a number of papers14,21,22.28,31,32 indicate that tg 6, values of filled 
systems are higher than corresponds to the volume fraction of the matrix in 
composites in which the filler particles do not participate in the dissipation of 
mechanical energy. In other words, it means that the empirical e q ~ a t i o n l ~ , ~ ~  

(7) 
is not fulfilled. An analogous linear relationship approximately holds for a 
number of copolymers of HEMA with other methacrylic comonomers (Fig. 5), 
which do not exhibit low-temperature dispersions above the liquid nitrogen 
temperature. (A certain level of energy losses in the second component has 
as its consequence that, with decreasing volume fraction of HEMA, U H ,  the tg 
6 values do not drop to zero.) For the two-phase system PHEMA-glass 
beads, all the values of tg 6 are higher than corresponds to eq. (7) (Fig. 5), and 
their concentration dependence is rather described by eq. (5). It can be in- 
ferred that the inequlity tg 6, > u, tg 6, cannot generally be regarded as a 
sufficient proof of the presence of additional dissipation mechanisms in com- 
posites (interparticular friction, friction at the interphase boundary, etc.). It 
seems that before these mechanisms are used, more or less speculatively, to 
interpret the experimental data, one should find out, if possible, whether the 
changes in G’, G”, and tg 6 due to the filler are or are not correlated with each 
other. 

tg 6, = u, tg 6, 

Effect of Water 

The effect of water on the temperature dependence of the storage and loss 
moduli was investigated only for samples with the highest volume fraction of 
the filler ub = 0.5 (Fig. 6). All the changes observed due to increasing water 
content are similar to those for unfilled PHEMA5: the main (a )  dispersion is 
shifted to lower temperatures and overlaps the dispersion; the y maximum 
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is reduced and eventually disappears; while the oSw maximum increases and 
is shifted toward lower temperatures. The temperature interval of the oSw 
dispersion, i.e., -70’ to -llO°C, coincides with this interval for PHEMA. As 
the increased magnitude of the y maximum leads to a higher PSw maximum 
(compared to unfilled PHEMA), it seems obvious that also in composites the 
incorporation of water brings about a transformation of the y process into the 
psw process. The data indicate that the effect of water is reflected only by 
standard changes in the energy dissipation patterns of the polymer matrix. 

CONCLUSIONS 

The above results allow us to conclude that the filler enhances the capacity 
of the matrix both to store and to dissipate mechanical energy. The depen- 
dence of the moduli of composite, G’, and G”,, on the filler content is de- 
scribed satisfactorily by the corresponding eqs. (3) and (4); at temperatures 
below the glass transition temperature, the agreement between theory and 
experiment is good only after correction for the effect of thermally induced 
stress has been carried out. It should be stressed that the character of molec- 
ular motion giving rise to the dispersions remains unchanged, because the 
temperature position of the loss maxima is independent of the filler content. 
In the case of the y dispersion, the proportionality between the height of the 
loss maximum and the corresponding decrease in the modulus AG‘, = 
G’,,(-196”C) - G’,,(-6OoC) is preserved, so that the ratio Qy = 2GN,/AG’, 
practically does not vary with the filler content (Table I). As the parameter 
Q thus defined can with a certain licence be consideredl the parameter of the 
distribution of relaxation times, it can be said that the filler does not affect 
the distribution of relaxation times of the y dispersion to any considerable 
degree. Consequently, it seems that the effect of the filler leads predomi- 
nantly to changes in the quantitative parameters, primarily in extent, of the 
molecular motion in the glassy state. Also, the data obtained do not indicate 
that at  the interphase boundary immobilization takes place of the side chains 
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or of backbone segments whose motion is responsible for the dispersions ob- 
served. 
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